pawis

HINTERGRUNDBERICHT ÖKOBILANZRECHNER FÜR BETONSORTEN

Für Hersteller:innen oder Planer:innen

Zürich, 14. November 2025

AUTOREN UND AUTORINNEN

Daniel Savi, Dipl. Umweltnaturwissenschafter ETH Matthias Klingler, MSc Umweltingenieur EPFL Julie Kaschub, Dipl. Umweltwissenschafterin ETH, Dipl. Biolandwirtin EFZ

AUFTRAGGEBER

Stadt Zürich, Amt für Hochbauten, Lindenhofstrasse 21, 8001 Zürich

AUFTRAGSNUMMER:

VERSION: 2

AUFTRAGNEHMER

Pawis GmbH Schaffhauserstrasse 21 8006 Zürich

Für den Inhalt des vorliegenden Berichts sind allein die Auftragnehmer verantwortlich. Dieser Bericht kann in elektronischer Form bezogen werden von der Website www.pawis.ch

pawis

Inhal	tsverzeichnis	
1.	EINLEITUNG	5
2.	UMFANG UND BEDIENUNG DER BETONRECHNER	6
2.1.	Berücksichtigte Betonsorten und Inhaltsstoffe	6
2.2.	Deklarierte Einheit	7 7
2.3.	Systemgrenze Ökobilanz	
2.4.	Indikatoren der Wirkungsabschätzung	8
2.5.	Eingabeparameter der NPK-/vereinfachten Erfassung	9
2.6.	Eingabeparameter der detaillierten Erfassung	11
2.7.	Resultatdarstellung	12
2.8.	Export als PDF aus dem Planer:innenrechner	12
3.	DOKUMENTATION DER ÖKOBILANZIERUNG IN DEN RECHNERN	13
3.1.	Hintergrunddaten	13
3.2.	Annahmen	14
3.3.	Allokationen	15
3.4.	Funktionsweise des Rechners bei detaillierter Erfassung der Rezeptu	ır 16
3.5.	Funktionsweise des Rechners bei Verwendung der NPK-Erfassung	18
3.6.	Berechnungsbeispiel	20
3.7.	Datenqualität	22
4.	VERGLEICH ZUR LETZTEN VERSION DES RECHNERS	25
5.	REFERENZEN	27
A1.	ANHANG	28
Δ11	I CIA-Daten Ökohilanzrechner für Betonsorten	28

pawis

Tabellenverzeichnis	
Tabelle 1: Inhaltsstoffe und Varianten	6
Tabelle 2: Eingabeparameter Betonsortenrechner mit NPK-Erfassung	9
Tabelle 3: Zusätzliche Eingabeparameter Betonsortenrechner mit detaillier	ter
Erfassung	12
Tabelle 4: Hintergrunddaten Ökobilanzrechner für Betonsorten	13
Tabelle 5: Standarddistanzen im Betonsortenrechner	14
Tabelle 6: Ausschnitt aus der Bezugsmatrix im Rechner. Die Eingaben der	
Anwender:innen (in den Spalten) werden den Ökobilanzdatensätzen	(in
den Zeilen) zugeordnet	16
Tabelle 7: Auszug aus der Berechnungsmatrix mit den Oekobilanzdatensät	zen
in den Spalten und den LCIA-Parametern in den Zeilen.	17
Tabelle 8: Ergebnismatrix mit den Bestandteilen in den Spalten und den LC	IA-
Resultaten in den Zeilen.	17
Tabelle 9: Standardzusammensetzungen für Betonsorten der NPK-Erfassun	ıg18
Tabelle 10: Primärkörnungen in Masse-% gemäss EPD des FSKB	19
Tabelle 11: Anteile runde Körnung und gebrochene Körnung nach Betonsor	
im Rechner	19
Tabelle 12: Anteile der Recyclingkörnungen an der Gesteinskörnung je nac	
gewählter Betonsorte	20
Tabelle 13: Beispiel Eingabe	21
Tabelle 14: Verknüpfung der Eingaben mit Datensätzen im Rechner	21
Tabelle 15: Okobilanzresultate pro m³ Beton	22
Tabelle 16: Repräsentativität der Hintergrunddaten	22
Tabelle 17: Eingabe für den Vergleich	25
Tabelle 18: Ökobilanzresultate pro m³ Beton, Betonsortenrechner v6.1	25
Tabelle 19: Ökobilanzresultate pro m³ Beton, Betonsortenrechner v7	26
Tabelle 20: LCIA-Daten für den Primärenergiebedarf	28
Tabelle 21: LCIA-Daten für die ökologische Knappheit und	
Treibhausgasemissionen	29
Tabelle 22: I CIA-Daten für biogenen Kohlenstoff	30

1. EINLEITUNG

Der vorliegende Bericht dokumentiert die Datengrundlagen und Funktionsweise des Ökobilanzrechners für Betonsorten. Der Rechner sowie die damit berechneten Ökobilanzindikatoren basieren auf den Ökobilanzregeln der Plattform Ökobilanzdaten im Baubereich (KBOB et al., 2022b).

Die Betonsortenrechner wurde ursprünglich als Excel-Anwendung von der Firma Treeze entwickelt. Diese wurden ab 2022 durch Pawis aktualisiert. Seit 2024 stand der Planer:innen-Rechner als Webanwendung zur Verfügung. Mit dem Update 2025 wird nun auch der Hersteller:innen-Rechner als Webanwendung bereitgestellt. Beide sind als Python- Software implementiert. Die Hintergrunddaten basieren auf den letzten verfügbaren UVEK-Datenbestand 2021, plus Zusatzdaten aus der KBOB-Liste Version 7.0 von 2025.

Der Ökobilanzrechner für Betonsorten kennt zwei Eingabemodi:

- Die NPK-Erfassung entspricht dem bisherigen Planer:innenrechner. Anwender:innen können die Betonanwendung nach NPK, Betonsorte nach SIA-Merkblatt 2030:2021 und den Zementtyp wählen. Die Rezepturen im Planer:innenrechner wurden gemäss der aktuellen Betonnorm neu definiert. Die Berechnung der Fliessmittel wurde aufgrund von Angaben von Betonwerken neu definiert und im vorliegenden Bericht dokumentiert.
- Die detaillierte Erfassung erlaubt die Eingabe einer Betonrezeptur durch die Anwender:innen.

In beiden Eingabevarianten kann zudem eingespeichertes CO₂ und die Bewehrung berücksichtigt werden.

2. UMFANG UND BEDIENUNG DER BETONRECHNER

2.1. Berücksichtigte Betonsorten und Inhaltsstoffe

Mit dem Betonsortenrechner lassen sich alle heute üblichen Betonsorten für die Anwendung im Hoch- oder Tiefbau berechnen. Tabelle 1 zeigt die verschiedenen Inhaltsstoffe und Varianten davon, welche in den Rechnern berücksichtigt werden. Es können alle Zementarten ausgewählt werden, für die Ökobilanzdaten in der Hintergrunddatenbank vorhanden sind. Zusätzlich sind herstellerspezifische Zementsorten verfügbar. Diese werden fortlaufend ergänzt, sobald eine herstellerspezifische Ökobilanz durch die Plattform für Ökobilanzdaten im Baubereich akzeptiert wurde.

Die Varianten der verschiedenen Gesteinskörnungen ermöglichen die Bilanzierung von Primärbeton, Recyclingbeton RC-C oder Recyclingbeton RC-M. Für Recycling- oder Mischgranulat wird in der vorgegebenen Mischung der NPK-Erfassung jeweils das Minimum gemäss Norm verwendet. Die Verwendung von speziellen Recyclinggranulaten mit eingespeichertem biogenem CO₂ (z.B. gemäss Verfahren der Firma Neustark) kann über die Eingabe von im Beton eingespeichertem CO₂ (siehe Kapitel 2.5) berücksichtigt werden. Als Zusatzstoff kann im Rechner Pflanzenkohle gewählt werden. Diese wird zugegeben, um biogenen Kohlenstoff im Beton einzulagern.

In der detaillierten Erfassung gibt es für die Zusatzmittel zwei Auswahlmöglichkeiten:

- Fliessmittel sind die am häufigsten verwendeten Zusatzmittel.
- Alle weiteren Zusatzmittel (Beschleuniger, Verzögerer, Luftporenbildner) werden mit einem generischen Wert berücksichtigt.

Für die vereinfachte Erfassung sind Standardwerte hinterlegt für die Anteile der Zusatzmittel.

Tabelle 1: Inhaltsstoffe und Varianten

Inhaltsstoff	Varianten detaillierte Erfassung	Varianten vereinfachte/NPK-Erfassung	
Zemente Schweizer Durchschnitt	CEM I, CEM II/A, CEM II/B, CEM III/A, CEM III/B		
Zemente herstellerspezifisch	Werden ergänzt nach Freigabe durch die Plattform Ökobilanzdaten im Baubereich		
Anmachwasser	Angabe in kg / m³	Wird berechnet	
Gesteinskörnung	Kies rund, Kies gebrochen, Sand, Kalksteinmehl, Misch- granulat M, Betongranulat C	Festlegung über gewählte Be- tonsorte: Primärbeton, RC- C25, RC-C50, RC-M10, RC- M40	
Zusatzmittel	Fliessmittel, weitere Zusatz- mittel	Festlegung über Betonanwen- dung: NPK A - L	
Zusatzstoffe	Pflanzenkohle		
Fixierung CO₂ im Granulat	Angabe in kg / m³		
Bewehrung	Angabe in kg / m³		

2.2. **Deklarierte Einheit**

Die Ökobilanzresultate im Betonrechner beziehen sich auf 1 m³ Frischbeton bewehrt oder nicht bewehrt, je nach Eingabe. Bei der Berechnung der Ergebnisse wird das Volumen berücksichtigt, welches von der Bewehrung eingenommen wird und das Betonvolumen um diesen Anteil reduziert.

2.3. Systemgrenze Ökobilanz

Die Ökobilanz von Beton berücksichtigt die Herstellung und die Entsorgung. Die Herstellung umfasst den Abbau von Primärrohstoffen, den Transport zum Herstellungsort sowie die Herstellung selbst und alle damit verbundenen Stoff- und Energieströme. Die Entsorgung umfasst den Abbruch, den Transport zur Aufbereitung oder in die Deponie sowie die Aufbereitung bis zum Ende der Abfalleigenschaft und die Deponierung von nicht verwertbaren Fraktionen.

In der Ökobilanz nicht enthalten sind die Transporte auf die, sowie die Verarbeitung auf der Baustelle. Somit auch nicht die Verluste dieser Prozesse (siehe Abbildung 1).

Abbildung 1: Systemgrenzen der Ökobilanz bezüglich der Lebenszyklusphasen

Lebens-Produktion Anwendung Rohstoffversorgung Herstellung Transport zur Baustelle zyklus-Einbau phase Transport **EPD-Modul** gemäss Α1 A2 **A3** Α4 A5 SN EN 15804+A2 Im Betonrechner Herstellung ausgewiesen unter

Lebens-	Nutzungsphase				Entsorgung				
zyklus-	Nutz	ung	Reparatur		Erneuerung	Rück	bau	Abfa	llbehandlung
phase		Insta	andhaltung	Ersa	atz		Tran	sport	Beseitigung
EPD-Modul									
gemäss	В1	B2	B3	В4	B5	C1	C2	C3	C4
SN EN 15804+A2									
Im Betonrechner ausgewiesen unter							En	tsorgi	ung

NI. donous sus sala a a a a

Die Nutzungsphase des Betons wird nicht ausgewiesen. Dies in Übereinstimmung mit den Regeln der Plattform Ökobilanzdaten im Baubereich. Die Ökobilanzdaten der Nutzungsphase wären nur für die CO₂ Emissionen nicht gleich null. Durch Karbonatisierung des Betons kann ein Teil der herstellungsbedingten Emissionen wieder im Beton gebunden werden. Auf Gebäudeebene wird die CO₂-Einspeicherung durch natürliche Karbonatisierung von Beton in (Alig et al., 2021) auf 0.1-1% geschätzt, wobei die Autoren der erwähnten Studie 0.1% als realistischen Wert einschätzen. Bezogen auf die Emissionen allein in der Betonherstellung kommt die Studie von (Kasser et al., 2014) auf eine Potential von maximal 10%.

2.4. Indikatoren der Wirkungsabschätzung

Die Ökobilanzresultate basieren auf den Ökobilanzmethoden gemäss den Ökobilanzregeln der Plattform Ökobilanzdaten im Baubereich (KBOB et al., 2022b). Die berücksichtigten Indikatoren sind:

- Umweltbelastungspunkte [UBP]
- Primärenergie gesamt [kWh]
- Primärenergie erneuerbar [kWh]
- Primärenergie nicht erneuerbar [kWh]
- Treibhausgasemissionen fossil und geogen [kg CO₂-Äq.]
- Biogener Kohlenstoff [kg C]

Die fossilen und geogenen Treibhausgasemissionen umfassen alle Emissionen, die nicht biogenen Ursprungs sind. Dazu gehören z.B. die CO₂-Emissionen aus der Verbrennung von fossilen Energieträgern oder die Emissionen von CO₂ durch die Kalzinierung von Kalkstein während der Herstellung von Zement.

Biogene CO₂-Emissionen werden im Rechner nicht ausgewiesen. Ausgewiesen wird hingegen eingelagerter biogener Kohlenstoff. Es gibt zwei Möglichkeiten zur Einlagerung von Kohlenstoff biogenen Ursprungs im Beton: einerseits kann durch die Begasung von Recycling-Betongranulat biogenes Kohlendioxid im Granulat gebunden werden (z.B. Verfahren Neustark AG), andererseits kann biogener Kohlenstoff durch die Zugabe von Pflanzenkohle im Beton eingespeichert werden (z.B. Beton Firma Klark). Wenn dieser eingespeicherte Kohlenstoff einer Klimabilanz angerechnet werden soll, muss dies extern erfolgen. Dabei sind geltende Regeln von Gebäudelabels oder Baustandards zu beachten, falls solche vorgegeben werden.

2.5. Eingabeparameter der NPK-/vereinfachten Erfassung

Abbildung 2: Die Eingabemaske (links) und Resultatdarstellung (rechts) mit NPK-Erfassung im Webbrowser

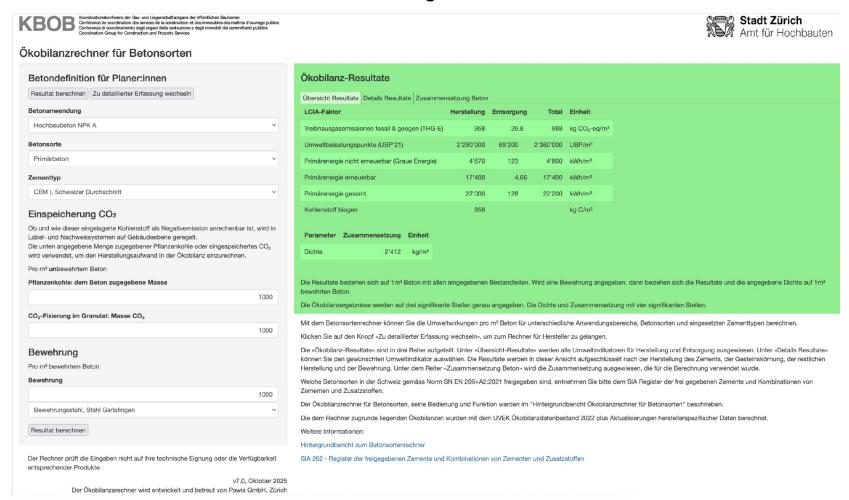


Tabelle 2: Eingabeparameter Betonsortenrechner mit NPK-Erfassung

Thema	Parameter
Betonanwendung	Magerbeton
	Hochbaubeton NPK A
	Hochbaubeton NPK B
	Hochbaubeton NPK C
	Tiefbaubeton NPK D
	Tiefbaubeton NPK E
	Tiefbaubeton NPK F
	Tiefbaubeton NPK G
	Bohrpfahlbeton (im Trockenen) NPK H / NPK K
	Bohrpfahlbeton (unter Wasser) NPK I / NPK L
Betonsorte	Primärbeton
	RC-C25
	RC-C50
	RC-M10
	RC-M40
Zementtyp	CEM I, JURA FIX
	CEM II/A, Schweizer Durchschnitt

Thema	Parameter
Zementtyp	CEM II/A-LL, JURA FAST
	CEM II/A-LL, JURA FLEX
	CEM II/A-LL, Vigier CEM Subito
	CEM II/A-LL, Vigier CEM Universo
	CEM II/A-M (LL-D), Vigier CEM CT180
	CEM II/B, Schweizer Durchschnitt
	CEM II/B-LL, Schweizer Durchschnitt
	CEM II/B-LL, JURA ECO
	CEM II/B-LL, Vigier CEM Bono
	CEM II/B-M (S-LL), JURA DUR
	CEM II/C-M (F-S), Holcim Susteno 4S
	CEM II/C-M (F-T), Holcim Susteno 4
	CEM II/C-M (Q-LL), JURA ECO3
	CEM III/A, Schweizer Durchschnitt
	CEM III/B, Schweizer Durchschnitt
	CEM ZN-D, Vigier CEM Progresso
	H-UKR, Hofmann Green
Bewehrung	Angabe in kg/m³
Einspeicherung CO₂	Dem Beton zugegebene Masse Pflanzenkohle [kg Kohle/m³]
	Im Recycling-Betongranulat fixierte Masse Kohlendioxid [kg CO ₂ /m³]

Die Bewehrung reduziert das Volumen, das durch den Beton ausgefüllt wird. Sobald die Nutzer:innen eine Bewehrung eingeben, bezieht sich das Ergebnis nicht mehr auf 1 m³ reinen Beton, sondern auf 1 m³ bewehrten Beton.

Bei den beiden Optionen für eine Einspeicherung von Kohlendioxid gilt es einen Unterschied zu beachten: die Pflanzenkohle, die dem Beton zugegeben wird, füllt wie jeder andere Bestandteil einen Teil des Volumens der Betonmischung aus. Anders verhält es sich mit dem Kohlendioxid, das im Recycling-Granulat fixiert wird. Weil die Betonrezeptur stabil bleiben soll, also gleich viel Betongranulat C im Beton zugegeben wird, ob es nun mit CO₂ angereichert wurde oder nicht, wird für das eingegebene CO₂ nicht nochmals zusätzliches Volumen in der Berechnung berücksichtigt.

2.6. Eingabeparameter der detaillierten Erfassung

Abbildung 3: Eingabemaske der detaillierten Erfassung in der Ansicht auf mobilen Geräten

Resultat berechnen Zu NPK-/vereinfachter	r Erfassung wechseln		
Betonanwendung			
Hochbaubeton NPK A			
Zusammensetzung			
Zusammensetzung für 1m³ unbewehrten Beton	Masse [kg/m³]	Transport- Distanz LKW [km]	Distanz
Zementtyp	280.0	20.0	100.0
CEM III/B, Schweizer Durchschnitt			
Betongranulat C	0.0	20.0	0.0
Mischgranulat M	0.0	20.0	0.0
Kies, rund	1405.404	20.0	0.0
Kies, gebrochen	14.196	20.0	0.0
Sand	400.4	20.0	0.0
Kalksteinmehl	0	20.0	0.0
Flugasche	0	20.0	0.0
Fliessmittel (Menge, die dem Beton zugegeben wird)	1.26	50.0	600.0
Weitere Zusatzmittel (Beschleuniger, Verzögerer, etc.)	0	50.0	600.0
Wasser	140.0	0.0	0.0
Einspeicherung CO ₂ Ob und wie dieser eingelagerte Kohlenstoff a	als Nogativomission aproch	enhar ist wii	rd in Label
und Nachweissystemen auf Gebäudeebene g Die unten angegebene Menge zugegebener l verwendet, um den Herstellungsaufwand in d	geregelt. Pflanzenkohle oder eingesp	oeichertes C	
und Nachweissystemen auf Gebäudeebene g Die unten angegebene Menge zugegebener i verwendet, um den Herstellungsaufwand in d	geregelt. Pflanzenkohle oder eingesp	oeichertes C	O ₂ wird Transport Distanz
und Nachweissystemen auf Gebäudeebene g Die unten angegebene Menge zugegebener l verwendet, um den Herstellungsaufwand in d Pro m³ unbewehrtem Beton	geregelt. Pflanzenkohle oder eingesp der Ökobilanz einzurechner	peichertes Con. Transport- Distanz	O ₂ wird Transport Distanz
und Nachweissystemen auf Gebäudeebene g Die unten angegebene Menge zugegebener l verwendet, um den Herstellungsaufwand in d Pro m³ unbewehrtem Beton Pflanzenkohle: dem Beton zugegebene Masse	geregelt. Pflanzenkohle oder einges der Ökobilanz einzurechner Masse [kg/m³]	neichertes Con. Transport- Distanz LKW [km]	O₂ wird Transport Distanz Bahn [km
und Nachweissystemen auf Gebäudeebene of Die unten angegebene Menge zugegebener verwendet, um den Herstellungsaufwand in of Pro m³ unbewehrtem Beton Pflanzenkohle: dem Beton zugegebene	geregelt. Pflanzenkohle oder eingesper Ökobilanz einzurechner Masse [kg/m³] 0.0 0.0 vendet wird: In der Zusamn	Transport- Distanz LKW [km]	Transport Distanz Bahn [km
und Nachweissystemen auf Gebäudeebene of Die unten angegebene Menge zugegebener verwendet, um den Herstellungsaufwand in of Pro m³ unbewehrtem Beton Pflanzenkohle: dem Beton zugegebene Masse CO₂-Fixierung im Granulat: Masse CO₂ Hinweis, falls Granulat mit fixiertem CO₂ verw	geregelt. Pflanzenkohle oder eingesper Ökobilanz einzurechner Masse [kg/m³] 0.0 0.0 vendet wird: In der Zusamn	Transport- Distanz LKW [km] 70.0 0.0 nensetzung l	O ₂ wird Transport Distanz Bahn [km 0.0 0.0 oitte die
und Nachweissystemen auf Gebäudeebene g Die unten angegebene Menge zugegebener I verwendet, um den Herstellungsaufwand in c Pro m³ unbewehrtem Beton Pflanzenkohle: dem Beton zugegebene Masse CO₂-Fixierung im Granulat: Masse CO₂ Hinweis, falls Granulat mit fixiertem CO₂ verw Masse Recyclinggranulat ohne fixiertes CO₂	geregelt. Pflanzenkohle oder eingesper Ökobilanz einzurechner Masse [kg/m³] 0.0 0.0 vendet wird: In der Zusamn	Transport- Distanz LKW [km]	Transport Distanz Bahn [km 0.0 0.0 Ditte die

Auf der Abbildung 3 ist die Eingabemaske der detaillierten Erfassung zu sehen. Die Angabe im Feld «Betonanwendung» dient zur Berücksichtigung des Herstellungsaufwands im Betonwerk. Die Angabe der Inhaltsstoffe im Rechner erfolgt bezogen auf einen Kubikmeter Frischbeton ohne Bewehrung. Dies gilt auch dann, wenn eine Bewehrung eingegeben wird. Die Angabe der Transportdistanz für die Anlieferung pro Inhaltsstoff ist mit einem Standardwert ausgefüllt. Diese können für LKW-Strecken und Bahntransporte angepasst werden, wenn bessere Daten verfügbar sind. Die Angaben werden in Kilometer (ohne Leerfahrten) gemacht. Die Tabelle 3 zeigt die Eingabeparameter für die die Transportdistanz eingegeben werden kann. Die weiteren Parameter für Einspeicherung CO2 und Bewehrung sind dieselben wie für die NPK-Erfassung.

Die Angabe im Feld «CO₂-Fixierung im Granulat: Masse CO₂» erfolgt in Kilogramm CO₂ pro m³ unbewehrtem Beton. Das Feld darf nur ausgefüllt werden, wenn in der Betonrezeptur Recyclinggranulate mit eingespeichertem biogenem CO₂ eingesetzt werden. Zu beachten ist, dass sich die Menge Betongranulat C, die eingegeben wird, auf das Granulatgewicht vor der Anreicherung beziehen soll. Falls in der Betonrezeptur Pflanzenkohle vorhanden ist, wird der Herstellungsaufwand für die im Beton gebundene Kohle vom Rechner ermittelt.

Tabelle 3: Zusätzliche Eingabeparameter Betonsortenrechner mit detaillierter Erfassung

Thema	Parameter
Zusammensetzung für 1m³ unbe-	Zementtyp
wehrten Beton	Betongranulat C
Eingabe in kg/m³ unbewehrten Frischbeton	Mischgranulat M
	Kies, rund
	Kies, gebrochen
	Sand
	Kalksteinmehl
	Flugasche
	Fliessmittel (Menge, die dem Beton zugegeben wird)
	Weitere Zusatzmittel (Beschleuniger, Verzögerer, etc.)
	Wasser
Transporte Bereitstellung In- haltsstoffe	Angabe der Transportdistanz für die Anlieferung der Inhaltsstoffe auf der Strasse oder der Schiene.

2.7. Resultatdarstellung

Die Ergebnisdarstellung im Reiter «Übersicht Resultate» zeigt die Umweltindikatoren, aufgeschlüsselt nach der Herstellungsphase bis zum Werkstor und der Entsorgung inklusive Rückbau.

Unter dem Reiter «Details Resultate» werden die Ergebnisse für den gewählten Ökobilanzfaktor angezeigt. Sie werden aufgeteilt in die Umweltfolgen der Zementherstellung, der Bereitstellung der Gesteinskörnung, den übrigen Aufwand der Betonherstellung und die Produktion der Bewehrung.

In den Ergebnissen wird der Aufwand für die Herstellung der Pflanzenkohle der Zeile «Übriges Betonherstellung» angerechnet. Der Aufwand für die CO₂-Einlagerung im Granulat wird der Gesteinskörnung angerechnet.

Unter «Zusammensetzung Beton» wird die Zusammensetzung für 1 m³ reinen Frischbeton angegeben.

2.8. Export als PDF aus dem Planer:innenrechner

Über die Druckfunktion kann das Ergebnis aus dem Ökobilanzrechner ausgedruckt oder als PDF exportiert werden. Der Ökobilanzrechner greift dafür auf die Druckeinstellungen des Betriebssystems zurück. Im Druckdialog wählen sie die entsprechende Option aus und speichern die Datei am gewünschten Ort.

3. DOKUMENTATION DER ÖKOBILANZIERUNG IN DEN RECHNERN

3.1. Hintergrunddaten

Als Hintergrunddaten wurden der Daten aus der Hintergrunddatenbank für die Liste der Ökobilanzdaten im Baubereich (KBOB et al., 2022a) verwendet. Die Datenbank wurde den Autoren von der Plattform Ökobilanzdaten zur Verfügung gestellt. Die verwendeten Datensätze sind in Tabelle 4 aufgeführt. Nebst den Daten für die verschiedenen Inhaltsstoffe werden weitere Aufwände und Emissionen der Herstellung von Beton berücksichtigt. Diese werden mit den Datensätzen «Herstellung Hochbaubeton», «Herstellung Tiefbaubeton», «Herstellung Bohrpfahlbeton» und «Herstellung Magerbeton» in der Ökobilanz abgebildet. Der Datensatz «CO2 stored in recycled concrete aggregate» enthält die Sachbilanz für die Einbindung von 1 kg biogenem CO2 in einem Betongranulat, inklusive Gewinnung aus Rohbiogas, Verdichtung, Transport und Lagerung. Die Prozesskette für die Entsorgung ist für alle Betone gleich und wird mit dem Datensatz «disposal, concrete, as building waste» berücksichtigt (siehe auch Kapitel 3.2). Die Transporte werden mit einem durchschnittlichen Datensatz für einen Lastwagentransport und einem Datensatz für einen Frachttransport per Bahn (mit Rangieren) bilanziert.

Tabelle 4: Hintergrunddaten Ökobilanzrechner für Betonsorten

Inhaltsstoff / Prozess	UVEK Daten
Zemente	CEM I cement, at plant, CH
Schweizer Durchschnitt	CEM II/A cement, at plant, CH
	CEM II/B cement, at plant, CH
	CEM II/B-LL cement, at plant, CH
	CEM III/A cement, at plant, CH
	CEM III/B cement, at plant, CH
Zemente herstellerspezifisch	Stand Nov. 2025: 14 Datensätze
Betongranulat C	recycling aggregate from concrete demolition, dry, at plant, CH
Mischgranulat M	recycling aggregate from mixed demolition, dry, at plant, CH
Kies, rund	Gravel, round, at mine, CH
Kies, gebrochen	Gravel, crushed, at mine, CH
Sand	Sand, at mine, CH
Kalksteinmehl	Limestone, milled, loose, at plant
Flugasche	Die Herstellung geht ohne Lasten in die Bilanz ein
Fliessmittel	Polycarboxylates, 40% active substance, at plant, RER
Weitere Zusatzmittel	Chemicals organic, at plant, GLO
Wasser	tap water, at user, CH
Transport, Lastwagen	transport, freight, lorry 16-32 metric ton, fleet average, CH

Inhaltsstoff / Prozess	UVEK Daten
Transport, Bahn	transport, freight, rail, electricity with shunting, CH
Pflanzenkohle	Charcoal, closed pyrolysis, at plant (Klark 2023)
Verfahren Einspeicherung CO₂ in Recycling-Granulat	CO₂ stored in recycled concrete aggregate, CH
Bewehrungsstahl	reinforcing steel, at regional storage, with resource correction
	Zusätzlich herstellerspezifische Daten gemäss KBOB-Liste
Herstellung Hochbaubeton, Aufwendungen im Betonwerk	concrete for building construction, only common base, at plant, CH
Herstellung Tiefbaubeton, Aufwendungen im Betonwerk	concrete for civil engineering, only common base, at plant, CH
Herstellung Bohrpfahlbeton, Aufwendungen im Betonwerk	concrete for drilled piles, only common base, at plant, CH
Herstellung Magerbeton, Auf- wendungen im Betonwerk	lean concrete, only common base, at plant, CH
Standardszenario für die Ent- sorgung Beton: 67% Verwer- tung, 33% Deponie	disposal, concrete, as building waste, CH

3.2. Annahmen

Sofern ein Hersteller keine Angaben zu den Transporten für die Anlieferung der Inhaltsstoffe machen kann, werden die Transporte im Rechner mit durchschnittlichen Transportdistanzen berücksichtigt. Die Distanzen für die durchschnittlichen Strassen- und Bahntransporte sind in Tabelle 5 dargestellt. Mit Ausnahme der Transportdistanz für Pflanzenkohle beruhen sie auf den Standarddistanzen gemäss ecoinvent (Frischknecht et al., 2007). Für die Anlieferung der Pflanzenkohle wurden die Standorte der Werke des bisher einzigen Schweizer Betonherstellers eines Betons mit Pflanzenkohle recherchiert. Aus diesen wurde eine mittlere Transportdistanz von 70 km LKW-Transport abgeschätzt.

Tabelle 5: Standarddistanzen im Betonsortenrechner

Betonbestandteil	Standarddistanz Strasse [km]	Standarddistanz Bahn [km]
Zement	20	100
Kies, rund	20	0
Kies, gebrochen	20	0
Sand	20	0
Mischgranulat M	20	0
Betongranulat C	20	0

Betonbestandteil	Standarddistanz Strasse [km]	Standarddistanz Bahn [km]
Fliessmittel (Menge die dem Beton zugegeben wird)	50	600
Wasser	0	0
Flugasche	20	0
Weitere Zusatzmittel (Beschleuniger, Verzögerer etc.)	50	600
Pflanzenkohle	70	0
Bewehrung	50	600

Für die Entsorgung des Betons und der Armierungseisen wurde das durchschnittliche Entsorgungsszenario für Beton gemäss der Liste Ökobilanzdaten im Baubereich (KBOB et al., 2022a) berücksichtigt. Der Entsorgungsweg von Beton beruht auf einer Studie zur Entsorgung von Baustoffen (Klingler et al., 2019). Aus dieser Untersuchung geht hervor, dass ein Anteil von 67% Beton aus dem Rückbau aufbereitet und stofflich verwertet wird. Ein Anteil von 33% Beton gelangen in eine Deponie Typ B. Demzufolge ist für die Aufbereitung und Entsorgung von 1 Kilogramm Beton eine einheitliche Sachbilanz, unabhängig von der Zusammensetzung des Betons, im Rechner berücksichtigt. Gemäss Literaturangaben (Lohmann, 2010) beträgt der Kohlenstoffanteil in Pflanzenkohle 75-90 Massen-%. Im Betonrechner wurde ein mittlerer Kohlenstoffgehalt von 82.5% angenommen. Dies entspricht 3.025 kg biogenem CO₂ pro Kilogramm Pflanzenkohle.

Für die Berechnung der Rohdichte des ausgehärteten Betons wurde ein Wasserzementfaktor (w/z-Wert) von 0.4 berücksichtigt. Pro Kilogramm Zement in der Rezeptur werden 0.4 kg Wasser chemisch gebunden.

Für die Berechnung der Umweltbelastungspunkte gemäss der Methode der ökologischen Knappheit wird für Kies und Sand die dissipative Ressourcennutzung bewertet. Basierend auf den Entsorgungsdaten für die Schweiz aus (Klingler et al., 2019) wird davon ausgegangen, dass bei der Nutzung von Kies oder Sand 67% am Lebensende aufbereitet werden und demzufolge 33% dissipativ genutzt werden. Gemäss der Methode der ökologischen Knappheit (Frischknecht et al., 2021) wird nur diese dissipative Nutzung bei der Berechnung der UBP berücksichtigt. In früheren Versionen des Rechners wurde eine dissipative Nutzung für lediglich 10% des Kieses oder Sandes angenommen.

3.3. Allokationen

Im Betonsortenrechner werden bezüglich der eingegebenen Daten keine Allokationen vorgenommen. Die Allokationen in den Hintergrunddaten sind in der UVEK-Datenbank und den dazugehörenden Berichten dokumentiert.

3.4. Funktionsweise des Rechners bei detaillierter Erfassung der Rezeptur

Die Eingaben für den Anwendungsbereich, die Betonzusammensetzung und das eingespeicherte Kohlendioxid werden mit den zugehörigen Ökobilanzdatensätzen multipliziert. Dies geschieht in einer Matrizenmultiplikation über alle Ökobilanzindikatoren, wie in Formel 1 dargestellt. Die Summe über alle Bestandteile ergibt dann das Ergebnis für jeden der ausgewiesenen Indikatoren der Wirkungsabschätzung.

Formel 1: Berechnung der LCIA-Ergebnisse mit einer Matrizenmultiplikation

 $Zuordnungsmatrix \cdot Berechnungsmatrix = Ergebnismatrix$

Der Bezug zwischen den Eingaben und den Okobilanzdaten wird über eine Bezugsmatrix hergestellt. Ein gekürztes Beispiel für die Bezugsmatrix ist in Tabelle 6 dargestellt. Die Bezugsmatrix umfasst die Beziehung zwischen Eingabe für einen Bestandteil und dessen Herstellungsdatensatz. Diese Beziehung ergibt sich aus der Einheit der Eingabe einerseits und der Einheit des Ökobilanzdatensatzes andererseits. Werden beispielsweise 200kg CEM II/B vom Nutzer eingegeben, so werden diese mit dem Datensatz «CEM II/B cement, at plant» multipliziert, dessen Bezugseinheit ebenfalls kg ist. Die Bezugsmatrix stellt auch die Verbindung zu den Transportdatensätzen für Strassenoder Bahntransport her. Diese ergibt sich aus der Standarddistanz für den Bestandteil (gemäss Tabelle 5) oder der vom Nutzer eingegebenen produktspezifischen Distanz. Diese wird multipliziert mit der eingegebenen Masse, um Tonnenkilometer zu erhalten. Die Auswahl eines Anwendungsbereichs bestimmt, welcher der vier Datensätze «concrete ..., only common base, at plant» für die Berechnung herangezogen wird. Ein weiterer Bezug wird zur Entsorgung hergestellt. Die Okobilanz für die Entsorgung des Betons wird mit dem Entsorgungsdatensatz «disposal, concrete, as building waste», die Entsorgung des Armierungseisens mit dem Entsorgungsdatensatz «disposal, reinforcing steel, at regional storage» gerechnet.

Tabelle 6: Ausschnitt aus der Bezugsmatrix im Rechner. Die Eingaben der Anwender:innen (in den Spalten) werden den Ökobilanzdatensätzen (in den Zeilen) zugeordnet

Parameter	Zement	Kies rund	Kies gebrochen	Sand	Fliess- mittel
Gravel, round, at mine	0	1405	0	0	0
Gravel, crushed, at mine	0	0	14.20	0	0
Sand, at mine	0	0	0	400.4	0
CEM I cement, at plant	280	0	0	0	0
CEM II/A cement, at plant	0	0	0	0	0
CEM II/B cement, at plant	0	0	0	0	0
transport, freight, lorry 16-32 metric ton, fleet average	5.6	28.11	0.2839	8.008	0.063
transport, freight, rail, electricity with shunting	28	0	0	0	0.756

Die Berechnungsmatrix enthält die LCIA-Faktoren der Ökobilanzdatensätze. Diese ist auszugsweise in der Tabelle 7 abgebildet.

Die Ergebnisse werden pro Bestandteil berechnet, wie in der Tabelle 8 dargestellt. Die Gesamtergebnisse für die LCIA-Faktoren ergeben sich als Summen der Zeilen.

Tabelle 7: Auszug aus der Berechnungsmatrix mit den Oekobilanzdatensätzen in den Spalten und den LCIA-Parametern in den Zeilen.

Parameter	Gravel, round, at mine	Gravel, crushed, at mine	Sand, at mine	CEM I cement, at plant	CEM II/A cement, at plant	CEM II/B cement, at plant	transport, freight, lorry 16-32 metric ton, fleet average	transport, freight, rail, electricity with shunting
IPCC 2013 GWP 100a [kg CO₂ eq]	2.7E-03	4.7E-03	2.7E-03	7.5E-01	6.6E-01	6.4E-01	1.8E-01	1.2E-02
Ecological Scarcity 2021, categories, res. Cor. [UBP]	3.5E+01	4.0E+01	3.5E+01	8.9E+02	7.8E+02	7.6E+02	3.4E+02	3.3E+01
IPCC 2013 GWP 100a, specific CF for aviation [kg CO ₂ eq]	2.7E-03	4.7E-03	2.7E-03	7.5E-01	6.6E-01	6.4E-01	1.8E-01	1.2E-02
Cumulative Energy Demand - non-rene- wable [kWh]	1.4E-02	3.0E-02	1.4E-02	8.0E-01	6.8E-01	7.8E-01	7.6E-01	5.4E-02
Cumulative Energy Demand - renewable [kWh]	1.7E-03	5.3E-03	1.7E-03	8.6E-02	7.2E-02	6.7E-02	3.7E-02	4.6E-02
Cumulative Energy Demand - total [kWh]	1.6E-02	3.6E-02	1.6E-02	8.8E-01	7.6E-01	8.5E-01	8.0E-01	1.0E-01
Carbon biogenic [kg C]	0	0	0	0	0	0	0	0

Tabelle 8: Ergebnismatrix mit den Bestandteilen in den Spalten und den LCIA-Resultaten in den Zeilen.

Parameter	Zement	Kies rund	Kies gebrochen	Sand	Fliessmittel	Wasser	Volumen Beton
IPCC 2013 GWP 100a [kg CO₂eq]	2.1E+02	8.9E+00	1.2E-01	2.5E+00	1.5E+00	2.3E-02	3.5E+00
Ecological Scarcity 2021, categories, res. Cor. [UBP]	2.5E+05	3.2E+04	4.0E+02	9.2E+03	2.4E+03	7.4E+01	7.9E+03

Parameter	Zement	Kies rund	Kies gebrochen	Sand	Fliessmittel	Wasser	Volumen Beton
IPCC 2013 GWP 100a, specific CF for aviation [kg CO₂eq]	2.1E+02	8.9E+00	1.2E-01	2.5E+00	1.5E+00	2.3E-02	3.5E+00
Cumulative Energy Demand non-renewable [kWh]	2.3E+02	4.1E+01	6.5E-01	1.2E+01	1.0E+01	1.7E-01	2.1E+01
Cumulative Energy Demand renewable [kWh]	2.6E+01	3.4E+00	8.6E-02	9.6E-01	2.4E-01	4.6E- 02	3.4E+00
Cumulative Energy Demand total [kWh]	2.5E+02	4.4E+01	7.3E-01	1.3E+01	1.0E+01	2.1E-01	2.4E+01
Carbon biogenic [kg C]	0	0	0	0	0	0	0

3.5. Funktionsweise des Rechners bei Verwendung der NPK-Erfassung

Die NPK-/vereinfachte Erfassung des Ökobilanzrechners arbeitet mit Standardrezepturen, die von den Nutzer:innen über die Auswahl der Betonanwendung gewählt werden können.

Tabelle 9: Standardzusammensetzungen für Betonsorten der NPK-Erfassung

Betonsorte	Magerbeton	Hochbaubeton NPK A	Hochbaubeton NPK B	Hochbaubeton NPK C
Einheit	kg/m³	kg/m³	kg/m³	kg/m³
Zement	150	280	280	300
Körnung	1482	1419.6	1419.6	1466.4
Sand	418	400.4	400.4	413.6
Wasser	75	140	140	150

Betonsorte	Tiefbaubeton NPK D/NPK E	Tiefbaubeton NPK F/NPK G	Bohrpfahlbeton P1 (im Trocke- nen) NPK H/NPK K	Bohrpfahl-be- ton P2 (unter Wasser) NPK I/NPK L
Einheit	kg/m³	kg/m³	kg/m³	kg/m³
Zement	300	320	330	380
Körnung	1466.4	1146.6	1446.9	1380.6
Sand	413.6	673.4	408.1	389.4
Wasser	150	160	165	190

Die weiteren Bestandteile der Zusammensetzung werden aus den Nutzer:innen-Eingaben ergänzt. Die Körnung wird zudem aufgeteilt in runde und gebrochene Körnungen. Ob runde oder gebrochene Körnung verwendet wird, wird von der lokalen Verfügbarkeit runder Körnung bestimmt. Runde Körnung wird auch als Kies bezeichnet,

gebrochene als Splitt. Im Alpenraum wird mehr Splitt verwendet, im Mittelland mehr Kies. Für den Planer:innenrechner beziehen wir das Verhältnis auf die Zusammensetzungen, die in den Umweltproduktdeklarationen des FSKB veröffentlicht wurden (SÜGB, 2023). In der Tabelle 10 listen wir die dort publizierten Anteile runder und gebrochener Körnung nach Betonsorten auf.

Tabelle 10: Primärkörnungen in Masse-% gemäss EPD des FSKB

Betonsorte	NPK A	NPK B	NPK C	NPK D	NPK E	NPK F	NPK G	NPK H/K	NPK I/L
Runde Kör- nung [%]	45	46	43	49	48	45	43	33	43
Gebrochene Körnung [%]	<1	<1	2	<1	0	3	4	<1	<1

In den EPD der FSKB werden Mischungen mit Primär- und Sekundärkörnungen ausgewiesen. Um das Verhältnis zwischen Primär- und Sekundärkörnung herzuleiten, teilen wir den Anteil gebrochene Körnung durch die Summe beider Körnungen. Die Anteile kleiner 1% werden für die Auswertung näherungsweise auf 0.5% gesetzt. Dann fassen wir die Ergebnisse nach den Betonsorten der vereinfachten Erfassung zusammen und erhalten die Verhältnisse gemäss Tabelle 11.

Tabelle 11: Anteile runde Körnung und gebrochene Körnung nach Betonsorten im Rechner

Betonsorte	Magerbeton	Hochbaubeton NPK A	Hochbaubeton NPK B	Hochbaubeton NPK C
Runde Körnung [%]	100	99	99	96
Gebrochene Körnung [%]	0	1	1	4

Betonsorte	Tiefbaubeton NPK D/NPK E	Tiefbaubeton NPK F/NPK G	Bohrpfahlbeton P1 (im Trocke- nen) NPK H/NPK K	Bohrpfahlbeton P2 (unter Was- ser) NPK I/NPK L
Runde Körnung [%]	99	93	99	99
Gebrochene Körnung [%]	1	7	1	1

Der Einfluss der Verteilung der Körnung auf die Ökobilanz des Betons liegt im Bereich von 5%-10%. Zudem unterscheidet sich das Verhältnis vor allem regional. Da der Rechner derzeit nicht zwischen Regionen unterscheidet, wird der Anteil gebrochener Körnung im Rechner über alle Betonsorten auf 1% festgesetzt.

Die Fliessmittelzugabe ist abhängig vom Zementgehalt des Betons. Zudem spielt es eine Rolle, wie viel Recyclingkörnung beigegeben wird. Aus den Angaben des bestehenden Betonrechners von treeze, sowie Interviews mit zwei Betonherstellern wurde eine Näherungsformel für die Fliessmittelzugabe hergeleitet. In der Praxis hängt die Fliessmittelzugabe von weiteren Parametern ab, wie z.B.: Wie ist die Kieszusammensetzung? Wie warm ist es? Wird Kran- oder Pumpbeton geliefert? In einem Ökobilanzrechner können nicht alle diese Angaben berücksichtigt werden, sie sind bei der Anwendung des Rechners durch eine:n Planer:in gar nicht alle bekannt. Die Näherungsformel ermöglicht lediglich eine realitätsnahe Ökobilanzierung der Betonherstellung. Bezogen auf den Zementgehalt werden je nach Betonsorte 0.45-1% Fliessmittel zugegeben. Dieser Faktor erhöht sich bei der Zugabe von Recyclingkörnung im Fall von NPK A-Beton um 0.25% und in allen anderen Anwendungen um 0.49% pro Prozent Recyclingkörnung im Beton.

Der Anteil von Betongranulat oder Mischgranulat hängt von der gewählten Betonsorte ab. Die Anteile werden gemäss Tabelle 12 ermittelt.

Die weiteren Parameter «Pflanzenkohle», «Bewehrung» und «eingelagertes CO₂» werden direkt aus der Benutzereingabe übernommen. Die Nutzer:innen sind selbst verantwortlich für die Praxistauglichkeit der verwendeten Kennzahlen.

Die ermittelte Zusammensetzung des Betons wird verwendet, um die Ökobilanz nach demselben Schema wie bei der detaillierten Erfassung zu berechnen (siehe dazu Kapitel 3.4).

Wahl Betonsorte	Mischgranulat M	Betongranulat C
Primärbeton	0%	0%
RC-C25	0%	25%
RC-C50	0%	50%
RC-M10	10%	0%
RC-M40	40%	0%

Tabelle 12: Anteile der Recyclingkörnungen an der Gesteinskörnung je nach gewählter Betonsorte

3.6. Berechnungsbeispiel

Die Funktionsweise des Rechners wird im Folgenden an einem Beispiel für armierten Hochbaubeton NPK B erläutert. Die Eingaben im Rechner (siehe Beispiel in Tabelle 13) werden den verschiedenen Hintergrunddaten aus Tabelle 4 zugeordnet. Diese Zuordnung ist in Tabelle 14 dargestellt. Die Inputs in Tonnenkilometer an Transporten ("transport, freight, rail, electricity with shunting" und "transport, freight, lorry 16-32 metric ton, fleet average") sind die Summen aller Transporte von Inhaltsstoffen per LKW und per Bahn. Für Fliessmittel und Pflanzenkohle sind spezifische Distanzen angegeben worden. Für die anderen Inhaltsstoffe berücksichtigt der Rechner die Standarddistanzen gemäss Tabelle 5. Der Input für die Entsorgung («disposal, concrete, as building waste») entspricht der Rohdichte des Frischbetons abzüglich der Menge Wasser und Fliessmittel, welche bei der Hydratation des Zements nicht chemisch gebunden werden. Im Betonrechner wurde ein Wasserzementfaktor (w/z-Wert) von 0.4 berücksichtigt. Pro Kilogramm Zement in der Rezeptur werden 0.4 kg Wasser chemisch gebunden. Von den 140 kg Wasser, welche in der Rezeptur in Tabelle 13 vorhanden sind,

werden 112 kg chemisch gebunden. Die Rohdichte des ausgehärteten Betons ist demzufolge um 30.2 kg (28 kg Wasser und 2.2 kg Fliessmittel) geringer als jene des frischen Betons.

Für die Berechnung des Betongranulat C gilt, dass die Masse ohne CO₂ eingegeben werden soll, wenn Granulat mit eingelagertem CO₂ eingesetzt wird. Das Gewicht des CO₂, das als im «Beton eingespeichertes CO₂» eingegeben wird, wird zur Mischung und somit auch der Dichte angerechnet.

Tabelle 13: Beispiel Eingabe

Zusammensetzung Betonsorte	Masse [kg/m³]	Transportdistanz LKW [km]	Transportdistanz Bahn [km]
Zement: CEM I, Schweizer Durchschnitt	280.0	20	100
Betongranulat C	600.0	20	0
Mischgranulat M	0.0	20	0
Kies, rund	500.0	20	0
Kies, gebrochen	500.0	20	0
Sand	200.0	20	0
Kalksteinmehl	0.0	20	0
Flugasche	0.0	20	0
Fliessmittel (Menge die dem Beton zugegeben wird)	2.2	50	600
Weitere Zusatzmittel (Beschleuniger, Verzögerer etc.)	0.5	50	600
Wasser	140.0	0	0
Anteil Pflanzenkohle	67.0	25	100%
In Beton eingespeichertes CO ₂ (in Masse Betongranulat C enthalten)	2.0	0	0
Bewehrung (Armierungseisen)	150	0	0

Tabelle 14: Verknüpfung der Eingaben mit Datensätzen im Rechner

UVEK-Hintergrunddaten	Inputs pro m³ Beton
HERSTELLUNG	
Gravel, resource correction	-327
Sand, resource correction	-131
Gravel, round, at mine	490
Gravel, crushed, at mine	490
Sand, at mine	196
recycling aggregate from concrete demolition, dry, at plant	589
Polycarboxylates, 40% active substance, at plant	2.16
tap water, at user	137
CEM I cement, at plant	275

CO₂ stored in recycled concrete aggregate	1.96
transport, freight, lorry 16-32 metric ton, fleet average	52.9
transport, freight, rail, electricity with shunting	28.8
Charcoal, closed pyrolysis, at plant (EPD Klark 2023)	65.7
reinforcing steel, at regional storage, with resource correction	150
ENTSORGUNG	
disposal, concrete, as building waste, CH [kg]	2216
disposal, reinforcing steel, at regional storage	150

Die Inputs in Tabelle 14 werden mit den Ökobilanzindikatoren der Hintergrunddaten in Anhang A.1 multipliziert und aufaddiert. Daraus ergeben sich die Ökobilanzresultate pro m³ Beton in Tabelle 15.

Ein paar Besonderheiten fallen auf. Die Inputs pro m³ Beton sind geringer als die Eingaben. Dies liegt daran, dass das Betonvolumen um das Volumen der Armierung reduziert wurde. Zudem ist die Masse des Betons in die Entsorgung geringer als die Dichte. Dies deshalb, weil das überschüssige Anmachwasser im Frischbeton nicht der Entsorgung angerechnet wird.

Tabelle 15: Ökobilanzresultate pro m³ Beton

	Herstellung	Entsorgung	Total	Einheit
Umweltbelastungspunkte (UBP)	588′000	82′400	670′000	UBP/m³
Primärenergie gesamt	2′290	128	2′410	kWh Öl-eq/m³
Primärenergie nicht erneuer- bar (Graue Energie)	937	123	1′060	kWh Öl-eq/m³
Primärenergie erneuerbar	1′350	4.55	1′350	kWh Öl-eq/m³
Treibhausgasemissionen (THG-E)	365	30.3	396	kg CO₂-eq/m³
Biogener Kohlenstoff	54.8			kg C/m³

3.7. Datenqualität

Tabelle 16 zeigt die Repräsentativität der verwendeten Hintergrunddaten ohne herstellerspezifische Datensätze, bezogen auf den Zeitraum, die Geographie und die Technologie. Die geographische und technologische Repräsentativität der Hintergrunddaten kann als gut bewertet werden. Bezogen auf das Alter der Daten ist die Datenqualität eher mittelmässig. Diverse Hintergrunddatensätze sind älter als 10 Jahre.

Tabelle 16: Repräsentativität der Hintergrunddaten

UVEK-Datensatz	Zeitraum	Geographie	Technologie
CEM I cement, at plant	2009-2010	Schweiz	Mix aus CEM I 42.5 und CEM I 52.5 R

UVEK-Datensatz	Zeitraum	Geographie	Technologie
CEM II/A cement, at plant	2009-2010	Schweiz	Mix aus CEM II/A-D, CEM II/A- LL and CEM II/A-S
CEM II/B cement, at plant	2009-2010	Schweiz	Mix aus CEM II/B-M (T-LL), CEM II/B-LL, CEM II/B-M (V-LL) and CEM II/B-T
CEM II/B-LL cement, at plant	2009-2010	Schweiz	Abgeleitet aus dem Datensatz CEM II/B CH-Mix
CEM III/A cement, at plant	2005-2023	Schweiz	Hochofenzement gemäss SN EN 197-1
CEM III/B cement, at plant	2005-2023	Schweiz	Hochofenzement gemäss SN EN 197-1
cement ZN/D, at plant	2018	Nicht doku- mentiert	Zement mit gebranntem Ölschiefer als Bestandteil
Chemicals organic, at plant	2000- 2023	Global	Durchschnittliche Daten für diverse Chemikalien
CO ₂ stored in recycled concrete aggregate	2022	Schweiz	Datensatz basiert auf der Bi- lanz von Neustark AG
concrete for building construction, only common base, at plant	2013-2023	Schweiz	Abgeleitet aus einem ecoinvent 3.2 Datensatz für Hochbaubeton
concrete for civil engineering, only common base, at plant	2013-2023	Schweiz	Abgeleitet aus einem ecoinvent 3.2 Datensatz für Tiefbaubeton
concrete for drilled piles, only common base, at plant	2013-2023	Schweiz	Abgeleitet aus einem ecoinvent 3.2 Datensatz für Bohrpfahlbeton
disposal, concrete, as building waste	2021	Schweiz	Durchschnittlicher Entsor- gungsweg für Beton gemäss Daten KAR-Modell
Gravel, crushed, at mine	1997-2001	Schweiz	Typische Technologie für Herstellung in der Schweiz
Gravel, round, at mine	1997-2001	Schweiz	Typische Technologie für Herstellung in der Schweiz
lean concrete, only common base, at plant	2013-2023	Schweiz	Abgeleitet aus einem ecoinvent 3.2 Datensatz für Magerbeton
Polycarboxylates, 40% active substance, at plant	1993-1998	Europa	Copolymerisationsverfahren von Maleinsäureanhydrid und Acrylsäure
recycling aggregate from concrete demolition, dry, at plant	2021	Schweiz	Daten von Eberhard AG, Tro- ckenverfahren, stationärer Brecher

UVEK-Datensatz	Zeitraum	Geographie	Technologie
recycling aggregate from mixed demolition, dry, at plant	2021	Schweiz	Daten von Eberhard AG, Tro- ckenverfahren, stationärer Brecher
sand, at mine	1997-2001	Schweiz	Typische Technologie für Herstellung in der Schweiz
Charcoal, closed pyrolysis (Klark 2023), CH [kg]	2023	Schweiz	Typische Technologie für Herstellung in der Schweiz
tap water, at user	2000	Schweiz	Typische Technologie für Herstellung in der Schweiz
transport, freight, lorry 16-32 metric ton, fleet average	2015	Schweiz	Emissionsklassen EURO3 - EURO6
transport, freight, rail, electricity with shunting	2019	Schweiz	Durchschnittliche Technologie Schweiz

Zur Modellierung der Pflanzenkohle «Charcoal, closed pyrolysis (Klark 2023), CH [kg]» wurden Sachbilanzdaten aus einer aktuellen Ökobilanzstudie eines Herstellers entnommen (Osterwalder, 2023).

4. VERGLEICH ZUR LETZTEN VERSION DES RECHNERS

Die Änderungen der Resultate wurden an einem Beispiel (siehe Tabelle 17) mit der vereinfachten Maske untersucht. Da sich keine Daten geändert haben, wird keine Änderung erwartet. Die Daten in Tabelle 17 wurden parallel in der Version 6.1 des Rechners und in der neuen Version 7.0 eingegeben. Die ältere Version ist in einem eigenen Hintergrundbericht (Savi et al., 2024) dokumentiert. Die Resultate sind in Tabelle 18 und in Tabelle 19 dargestellt.

Weil der neue Rechner den Sand bei der Berechnung des Recyclinggranulats berücksichtigt und der alte nicht, ergeben sich kleine Differenzen bei den Resultaten für UBP und Primärenergie nicht-erneuerbar in der Herstellung. Der neue Rechner ersetzt etwas mehr Körnung mit Recyclingkörnung, wodurch sich die Ergebnisse etwas verbessern. In der Entsorgung wurden die Faktoren für die Bewehrung in der Version 6.1 auf Null gesetzt. Tatsächlich sind sie jedoch etwas grösser als O. In der Version 7 werden nun die korrekten Faktoren der KBOB-Liste berücksichtigt.

Tabelle 17: Eingabe für den Vergleich

Eingabefeld	Wert
Betonanwendung	Hochbau NPK A
Betonsorte	RC-C50
Zementtyp	CEM II/B, Schweizer Durchschnitt
Bewehrung [kg/m³ Beton bewehrt] In v7.0: Bewehrungsstahl, Schweizer Durchschnitt	150 kg/m³
Pflanzenkohle: dem Beton zugegebene Masse [kg Kohle/m³ Beton unbewehrt]	50 kg/m³
Fixierung im Granulat: Masse CO ₂ [kg CO ₂ /m³ Beton unbewehrt]	2 kg/m³
Rohdichte Frischbeton	2321 kg/m³

Tabelle 18: Ökobilanzresultate pro m³ Beton, Betonsortenrechner v6.1

	Herstellung	Entsorgung	Total	Einheit
Treibhausgasemissionen (THG-E)	328	27.5	355	kg CO₂-eq/m³
Umweltbelastungspunkte (UBP)	531′000	76′800	608′000	UBP/m³
Primärenergie nicht erneuer- bar (Graue Energie)	901	112	1′010	kWh Öl-eq/m³
Primärenergie erneuerbar	1′020	4.1	1′030	kWh Öl-eq/m³
Primärenergie gesamt	1′920	116	2′040	kWh Öl-eq/m³
Kohlenstoff biogen	41			Kg C/ m³

Tabelle 19: Ökobilanzresultate pro m³ Beton, Betonsortenrechner v7

	Herstellung	Entsorgung	Total	Einheit
Treibhausgasemissionen (THG-E)	328	29.3	357	kg CO₂-eq/m³
Umweltbelastungspunkte (UBP)	529′00	79′700	608′000	UBP/m³
Primärenergie nicht erneuer- bar (Graue Energie)	900	119	1′020	kWh Öl-eq/m³
Primärenergie erneuerbar	1′020	4.4	1′030	kWh Öl-eq/m³
Primärenergie gesamt	1′920	124	2′050	kWh Öl-eq/m³
Kohlenstoff biogen	41			Kg C/ m³

5. REFERENZEN

- M. Alig, R. Frischknecht, L. Krebs, L. Ramseier & P. Stolz (2021) *LCA of climate friendly construction materials*. Uster: Bundesamt für Energie BFE, Amt für Hochbauten der Stadt Zürich AHB.
- R. Frischknecht & Jungbluth (2007) Overview and Methodology, ecoinvent report No. 1. Swiss Centre for Life Cycle Inventories.
- R. Frischknecht, L. Krebs, F. Dinkel, T. Kägi, C. Stettler & M. Zschokke (2021) Ökofaktoren Schweiz 2021 gemäss der Methode der ökologischen Knappheit. Bern: Bundesamt für Umwelt (BAFU), öbu.
- U. Kasser, M. Klingler & D. Savi (25. April 2014) Ökobilanzierung der Nutzungsphase von Baustoffen Methodik zur Bewertung umweltrelevanter Baustoffbestandteile Phase I: Entwicklung und Test der Methodik (Schlussbericht). Zürich: Büro für Umweltchemie. KBOB, eco-bau, & IPB (2022a) Ökobilanzdaten im Baubereich 2009/1:2022 Version 4. Bern: Koordinationskonferenz der Bau- und Liegenschaftsorgane der öffentlichen Bauherren c/o BBL Bundesamt für Bauten und Logistik, Fellerstrasse 21, 3003 Bern.
- KBOB, ecobau, & IPB (30. November 2022b) Regeln für die Ökobilanzierung von Baustoffen und Bauprodukten in der Schweiz (Version 6.0). Bern.
- M. Klingler & D. Savi (2019) Harmonisierte Ökobilanzen der Entsorgung von Baustoffen Für die Liste der Ökobilanzdaten im Baubereich. Bern: Bundesamt für Umwelt.
- D. Osterwalder (12. Juni 2023) Ökobilanz der «KLARK» Betonsorten der Logbau AG. Hombrechtikon: Umtec Technologie AG (UTech AG) Eichtalstrasse 54, 8634 Hombrechtikon.
- D. Savi, M. Klingler & J. Kaschub (17. Dezember 2024) Hintergrundbericht Aktualisierung Betonsortenrechner Für Hersteller und Planer:innen. Pawis Gmbh, Zürich. Abgerufen von pawis.ch
- SÜGB (Hrsg.) (2023) *Durchschnitts-EPD für Beton Sorte A, B, C, D, E, F, G, P1, P2*. Programm für Umwelt-Produktdeklarationen (EPD) des Schweizerischen Überwachungsverbands für Gesteinsbaustoffe, Schwanengasse 12, CH-3011 Bern.

A1. ANHANG

A1.1 LCIA-Daten Ökobilanzrechner für Betonsorten

In den folgenden Tabellen werden die Hintergrunddaten des Rechners ausgewiesen.

Tabelle 20: LCIA-Daten für den Primärenergiebedarf

Ökobilanzdatensatz	Bezugs- einheit	Cumulative Energy Demand		
		non- renewable	renewable	total
		kWh	kWh	kWh
transport, freight, rail, electricity with shunting	tkm	5.391E-02	4.641E-02	1.003E-01
transport, freight, lorry 16-32 metric ton, fleet average	tkm	7.610E-01	3.667E-02	7.976E-01
lean concrete, only common base, at plant	m³	1.982E+01	3.918E+00	2.374E+01
concrete for civil engineering, only common base, at plant	m³	2.360E+01	3.693E+00	2.729E+01
concrete for building construction, only common base, at plant	m³	2.090E+01	3.369E+00	2.427E+01
concrete for drilled piles, only common base, at plant	m³	2.353E+01	3.743E+00	2.728E+01
CEM I cement, at plant	kg	7.964E-01	8.597E-02	8.824E-01
CEM II/A cement, at plant	kg	6.837E-01	7.159E-02	7.553E-01
CEM II/B cement, at plant	kg	7.808E-01	6.727E-02	8.480E-01
CEM II/B-LL cement, at plant	kg	6.278E-01	6.773E-02	6.956E-01
CEM II/C-M (Q-LL)	kg	6.170E-01	7.430E-02	6.910E-01
CEM III/A cement, at plant	kg	7.818E-01	7.858E-02	8.604E-01
CEM III/B cement, at plant	kg	7.616E-01	7.483E-02	8.365E-01
cement ZN/D, at plant	kg	7.571E-O1	6.719E-02	8.243E-01
Gravel, resource correction UBP/kg	kg	0	0	0
Sand, resource correction UBP/kg	kg	0	0	0
Gravel, crushed, at mine	kg	5.223E-02	1.917E-03	5.415E-02
Gravel, round, at mine	kg	1.388E-02	1.669E-03	1.555E-02
recycling aggregate from concrete demolition, dry, at plant	kg	9.067E-03	1.447E-03	1.051E-02
recycling aggregate from mixed de- molition, dry, at plant	kg	4.570E-04	6.513E-05	5.221E-04
Sand, at mine	kg	1.388E-02	1.669E-03	1.555E-02

Ökobilanzdatensatz	Bezugs- einheit	Cumulative Energy Demand		
		non- renewable	renewable	total
		kWh	kWh	kWh
Limestone, milled, loose, at plant	kg	7.699E-02	2.620E-02	1.032E-01
Polycarboxylates, 40% active substance, at plant	kg	8.055E+00	1.597E-01	8.215E+00
Chemicals organic, at plant	kg	1.755E+O1	1.932E-01	1.774E+O1
tap water, at user	kg	1.180E-03	3.291E-04	1.510E-03
CO₂ stored in recycled concrete aggregate	kg	8.495E-01	2.013E-01	1.051E+00
disposal, concrete, as building waste	kg	5.223E-02	1.917E-03	5.415E-02
disposal, reinforcing steel, at regional storage	kg	5.10E-02	2.00E-03	5.30E-02

Tabelle 21: LCIA-Daten für die ökologische Knappheit und Treibhausgasemissionen

Ökobilanzdatensatz	Bezugs- einheit	Ecological Scarcity 2021, categories, res. cor.	IPCC 2013 GWP 100a
		UBP	kg CO₂ eq
transport, freight, rail, electricity with shunting	tkm	3.257E+01	1.234E-02
transport, freight, lorry 16-32 metric ton, fleet average	tkm	3.444E+02	1.825E-01
lean concrete, only common base, at plant	m³	7.372E+03	2.792E+00
concrete for civil engineering, only common base, at plant	m³	8.601E+03	3.891E+00
concrete for building construction, only common base, at plant	m³	7.875E+03	3.465E+00
concrete for drilled piles, only com- mon base, at plant	m³	8.561E+03	3.835E+00
CEM I cement, at plant	kg	8.948E+02	7.519E-01
CEM II/A cement, at plant	kg	7.795E+02	6.554E-01
CEM II/B cement, at plant	kg	7.580E+02	6.361E-01
CEM II/B-LL cement, at plant	kg	7.049E+02	5.912E-01
CEM II/C-M (Q-LL)	kg	6.670E+02	5.540E-01
CEM III/A cement, at plant	kg	5.911E+O2	4.613E-01
CEM III/B cement, at plant	kg	4.366E+02	3.150E-01
cement ZN/D, at plant	kg	6.483E+02	5.355E-01
Gravel, resource correction UBP/kg	kg	2.800E+01	0
Sand, resource correction UBP/kg	kg	2.800E+01	0

Ökobilanzdatensatz	Bezugs- einheit	Ecological Scarcity 2021, categories, res. cor.	IPCC 2013 GWP 100a
		UBP	kg CO₂ eq
Gravel, crushed, at mine	kg	3.586E+01	1.284E-02
Gravel, round, at mine	kg	3.466E+01	2.662E-03
recycling aggregate from concrete demolition, dry, at plant	kg	3.178E+00	1.334E-03
recycling aggregate from mixed de- molition, dry, at plant	kg	8.290E-01	7.110E-04
Sand, at mine	kg	3.466E+01	2.662E-03
Limestone, milled, loose, at plant	kg	3.453E+01	1.400E-02
Polycarboxylates, 40% active substance, at plant	kg	1.890E+03	1.159E+00
Chemicals organic, at plant	kg	3.006E+03	1.957E+00
tap water, at user	kg	5.308E-01	1.626E-04
CO ₂ stored in recycled concrete aggregate	kg	2.429E+02	7.957E-02
disposal, concrete, as building waste	kg	3.586E+01	1.284E-02
disposal, reinforcing steel, at regional storage	kg	1.95 E+01	1.20E-02

Tabelle 22: LCIA-Daten für biogenen Kohlenstoff

Ökobilanzdatensatz	Bezugs- einheit	Carbon, biogenic
		kg C
CO₂ stored in recycled concrete aggregate	kg C	0.273
Charcoal, closed pyrolysis (Klark 2023)	kg C	0.825